top of page

В земной форме материи кукловодом для всех её свойств является электрон. Ведь тяжеловесный протон является вихрем Бенара из позитронов. А позитроны в земной форме материи  обладают малой скоростью осевого движения по сравнению с электроном, на что указывает их структура.

5П структура позитрона земной формы материи, 5Э структура электрона земной формы. Во внешнем потоке электрона содержится один чёрг, что и определяет его большую скорость осевого движения по сравнению с позитроном, имеющем во внешнем потоке 5 чёргов. Поэтому протоны с нейтронами в структуре атома неподвижны

Кильпински с соавторами показали, что структура атома иттербия имеет вид.

Кольцевая структура атомов химических элементов может быть сформирована только неподвижными протонами с нейтронами, вокруг которых крутятся электроны, поднимаясь по одной стороне вверх по протону и опускаясь по другой стороне вниз по протону нейтрона. И у природы существует выбор с какой стороны электроны могут двигаться вокруг протона (справа или слева). Анализируя же процессы, происходящие на солнце, мы выяснили, что тёмные пятна являются вихрями Бенара, на торцах которых идут атомные превращения. Т.к.в структуре атомов отсутствует ядро и электронная оболочка, а в атоме электроны являются принадлежностью колец из протонов и из нейтронов, то термины ядерные превращения и ядерные реакции являются пустым звуком. Поэтому в основном будем использовать в дальнейшем термины атомные превращения или атомные реакции.

При этом в вершине материя двигается из хобота вихря на периферию с направлением её вращения (т.е. с правым направлением вращения). В основании же вихря материя двигается от периферии к хоботу с левым направлением вращения (с правым направлением вращения, если смотреть по направлению осевого движения). Пока тугодумы протоны расчухают куда надо вращаться, легконогие электроны уже перестроют своё движение. Правое же направление вращения электронов вокруг протонов является обходом электронами протонов слева. И напротив левое направление вращения выражается через обход электронами протонов справа. И конечно же наиболее мобильными электронами являются электроны внешнего кольца атомов, которые и реагируют своим обходом. Т.е. торцы вихря Бенара на солнце (в виде тёмных пятен) формируют у вновь формируемых атомов то или иное направление обхода электронами протонов (либо справа, либо слева).

И в среде атомов химических элементов встречаются образования с одним и тем же направлением электронами протонов в кольцах, примерами которых являются атомы алюминия

и меди.

Но направление обхода электронами протонов в пределах одного атома может меняться от кольца к кольцу, примером чего является атом железа.

В создании зарядов участвуют только внешние кольца атомов. Т.е. перестроение траекторий электронов при их движении вокруг протонов идёт только в пределах внешних колец атомов. Поэтому ток проводят и алюминий, и медь, и железо. Но при создании магнита перестраиваются траектории движения электронов вокруг протонов в пределах не только внешних колец атомов. Т.е. в северной половине магнита электроны всех колец атома обходят протоны с одной стороны, а в южной стороне магнита электроны во всех кольцах атомов обходят протоны с противоположной стороны. Но если для этого отсутствуют возможности (как в меди или в алюминии), то соответствующие вещества демонстрируют слабые пара или диамагнитные свойства.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

А т.к. в железе или, скажем, в неодиме в кольцах атомов существует разнобой (встечается и левый, и правый обход), то траектории обхода электронами протонов могут своё движение изменить не только во внешних кольцах атома. Поэтому эти вещества и являются ферромагнетиками.

Но кроме перечисленных веществ существуют ещё и диэлектрики, которые ещё умеют электризоваться, но электрического тока они не пропускают. Как правило к ним относятся полимеры. Кроме этого существует ещё и обширный класс веществ, назывемых полупроводниками.

 

При низких температурах они могут даже становиться диэлектриками. При повышении температуры их электрическое сопротивление уменьшается. Для современной физики существование полупроводников является происками дьявола, который злокозненно закрыл для нас механизм их формирования (поиск чёрной кошки в чёрной комнате). А тем не менее, вину за их существование добровольно берёт на себя их структура.

Скажем в атоме азота

 

 

 

 

 

 

 

 

 

и брома

 

 

во внешних кольцах наблюдается большое число подвижных, свободных электронов, которые способны таскать за собой атомы. Поэтому подобные вещества и демонстрируют свойства газов и жидкостей. Но большое число электронов, способных что-то таскать за собой, существует не только у этих атомов. Подобные атомы и создают класс полупроводниковых материалов, крася чёрную кошку в белый цвет, видимый и в тёмной комнате.

 

На подобное перекрашивание их и вынуждает структура строения втомов. Скажем структура атома бора

имеет тяжеловесный характер: во внешнем кольце расположено 7 частиц, которые не могут утащить за собой весь атом. Но они способны заставить электроны внутреннего кольца изменить направление обхода протонов. Внешний же анаполь формируется из электронов внешнего кольца атома, что при низких температурах приближает его свойства к диэлектрику. Ведь в металле требуется существование возможности изменения направления обхода электронами протонов справа или слева. А при такой структуре электроны внешнего кольца могут изменить направление своего обхода только вместе с электронами внутреннего кольца. Атом углерода

обладает столь же тяжелым внешним кольцом по отношению к внутреннему, что и делает его полупроводником (электроны внешнего кольца заставляют электроны внутреннего кольца изменить направление обхода протонов). Атом кремния

столь же тяжеловесен. Но 4 электрона внешнего кольца не могут изменить направление обхода электронами протонов во всех кольцах атома. В одном же анаполе второго этажа атома электроны могут изменить направление своего движения под действием электронов внешнего кольца. В то же время 3 электрона внешнего кольца атома алюминия

не в силах изменить направление обхода электронами протонов внутреннего кольца. Поэтому алюминий и является металлом. Т.е. электроны внешнего кольца имеют возможность менять направление обхода электронами протонов не меняя направление их обхода во внутренних кольцах атома. Атом фосфора

также имеет столь большое число электронов во внешнем кольце, что изменение направления их движения требует и изменение направления движения электронов в одном анаполе внутреннего кольца. Атом серы

имеет столько же оснований для того, чтобы относиться к полупроводникам. Атом германия

относится к полупроводникам. Но при взгляде на структуру атома непонятно почему при изменении направления движения электронов внешнего кольца должно изменяться и направление движения электронов в анаполе внутреннего кольца. И всё становится на свои места, если мы учтём, что анаполи каждого этажа любого из колец структуры атома относительно независимы от других анаполей кольца. Т.е. мы должны рассматривать только верхний анаполь третьего кольца,  в котором и изменяются направления обходов электронами протонов под действием электронов внешнего кольца. Поэтому германий и относится к полупроводникам. Мышьяк и селен

относятся к полупроводникам по этой же причине. Олово, сурьма, теллур и иод

 

являются полупроводниками по этой же причине. Более далёкие атомы, скажем свинец имеют

те же 4 электрона во внешнем кольце. Но электроны внешнего кольца могут уже изменять направление своего обхода протонов независимо от внутренних колец. Поэтому свинец металл, а не полупроводник.

 

А изложенная логика формирования полупроводниковых свойств веществ заставляет скорректировать и изложенное выше представление формирования магнитных свойств веществ. Скажем, в намагниченном образце железа на половине северного полюса электроны изменяют направление обхода электронами протонов только во внешнем кольце атома и в одном анаполе предыдущего кольца. На южной половине магнита ситуация противоположна, т.е. направление обхода электронами протонов на противоположное изменяется только во внешнем кольце и в одном анаполе внутреннего кольца. К тому же возникает и следующий вопрос. А может быть и пара, и диамагнетики также имеют чересполосицу обхода электронами протонов в разных кольцах, так же как и ферромагнетики. Отличие же между ними может заключаться только для двух внешних колец атома. У пара и диамагнетиков электроны обходят протоны в одном направлении только для двух внешних колец. А у ферромагнетиках у двух внешних колец обход электронами протонов наблюдается в противоположных направлениях. На эту крамольную мысль наталкивают свойства полупроводников, которые формируются только двумя внешними кольцами. Да и солнцу в подобном случае работать существенно легче. Ему ведь уже не надо заморачиваться с тем каков порядок обхода электронами протонов в том или в ином кольце атома. Думать ему приходится только о том, чтобы соблюсти порядок обхода электронами протонов только в двух последних кольцах.

позитрон с электроном земной формы 1.jpg

Рисунок 1

тень атома иттербия.jpg

Рисунок 2

13. атом алюминия.jpg

Рисунок 3

29. атом меди.jpg

Рисунок 4

26. атом железа.jpg

Рисунок 5

пара и диамагнетики 2.jpg

Рисунок 6

Рисунок 7

ферромагнитные вещества.jpg
полупроводники самый распространённый кл

Рисунок 8

5. атом бора 1.jpg

Рисунок 11

6. атом углерода.jpg

Рисунок 12

14. атом кремния.jpg

Рисунок 13

13. атом алюминия.jpg

Рисунок 14

15. атом фосфора.jpg

Рисунок 15

16. атом серы.jpg

Рисунок 16

32. атом германия.jpg

Рисунок 17

34. атом селена.jpg
33. атом мышьяка.jpg

Рисунок 18

50. атом олова 1.jpg
53. атом йода 1.jpg
52. атом теллура 1.jpg
51. атом сурьмы 1.jpg

Рисунок 19

82. свинец.jpg

Рисунок 20

7. атом азота.jpg

Рисунок 9

35. атом брома.jpg

Рисунок 10

bottom of page